
Wenyuan Zhao
University of California San Diego

La Jolla, CA, USA
wez030@ucsd.edu

Zheng Liu
University of California San Diego

La Jolla, CA, USA
zhl139@ucsd.edu

Ziyan Cui
University of California San Diego

La Jolla, CA, USA
z5cui@ucsd.edu

Abstract
Millimeter-wavelength (mmWave) mesh network can pro-
vide multi-Gbps transmission but with large path loss and
heterogeneous objectives which is hard to solve by tradi-
tional rule-based models. Machine learning (ML) techniques,
especially reinforcement learning (RL), have great poten-
tial in solving multi-objective, non-linear, and non-convex
problems that often happen in mmWave mesh network con-
figuration. On the other hand, network configuration poli-
cies learned from simulations cannot always help physical
networks meet performance requirements due to sim2real
gap. In this work, we develop a reinforcement learning (RL)
model to train a policy for dynamic topology management
and a self-supervised policy adaptation algorithm to bridge
the domain gap. The experimental results shows that our
RL agent can learn a policy to avoid blockage links and self-
supervised learningmodel can help to eliminate domain gaps.
The testbed we built can establish multiple routes and can be
controlled effectively by a central controller. We successfully
ran the simulation-trained RL policy and self-supervision
agent on the real testbed.

Keywords: mmWavemesh, topologymanagement, reinforce-
ment learning, self-supervised policy adaptation

ACM Reference Format:
Wenyuan Zhao, Zheng Liu, and Ziyan Cui. 2022. ECE257A Project
Report: AI-driven Dynamic Millimeter-Wave Mesh Backhaul. In
Proceedings of Modern Communication Networks (UCSD ECE257A).
ACM,NewYork, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
5G NR, released in 2019, has brought new standards and
challenges to the industry. Millimeterwave (mmWave) tech-
nology enables multi-Gbps transmission. With 5G network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
UCSD ECE257A, 2022, La Jolla, CA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

infrastructures, technologies and applications are quickly
evolving in recent years. For example, ultra-high definition
video streaming, autonomous vehicle and remote medical
care. These applications share the same requirement of ultra-
low latency and ultra-high reliability [4]. To meet these per-
formance requirements, it is important that network man-
agement settings get updated in time, so that they can adapt
to dynamic network conditions. However, in mmWave mesh
network, this remains to be an open problem. This is due to
high directional mmWave beam and heterogeneous objec-
tives in mmWave mesh networks, which makes traditional
pre-programmed and rule-based models hard to accommo-
date. 5G network adopts virtually sliced paradigm [3]. ’Slice’
refers to partitioning physical infrastructure into logically in-
dependent networks for more programmable network. This
feature also makes configuration decisions highly intractable.
Another challenge of mmWave mesh network configuration
is network dynamics. Multitudes of parameters need to be
reconfigured, which is beyond the scope of any standard
specification.
This inspires increasing exploration in data-driven ap-

proaches to solve this networking problem. In machine learn-
ing (ML), algorithm can be derived without explicit pre-
programming. ML-based method, especially reinforcement
learning (RL), has the potential in solving multi-objective,
non-linear and non-convex problems in mmWave mesh net-
work management.

In this project, we consider the dynamic mmWave mesh
networkmanagement problem shown in Fig. 1. The software-
definedmesh network supports dual-interface network nodes:
highly directional mmWave links for data plane and omnidi-
rectional low-frequency links (WiFi links) for control plane.
The packet sent from the source node usually needs several
relays to reach the destination node, and the controller has
to select appropriate links for high-rate data transmission.

Figure 1. mmWave mesh network topology.

 AI-driven Dynamic Millimeter-Wave Mesh
Backhaul

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

UCSD ECE257A, 2022, La Jolla, CA Wenyuan Zhao, Zheng Liu, and Ziyan Cui

To solve dynamic mmWave mesh network configuration,
we developed a reinforcement learning (RL) model, which
focuses on selecting transmit uplinks which provide optimal
quality of service (QoS). However, training a policy requires
a large amount of data, and collecting data on real mesh
is very expensive. So we intend to utilize simulations to
generate data and train the RL policy in simulations first.
But it corresponds to another challenge: directly deploying
simulation-trained policy to real-world environment cannot
achieve expected performance due to the domain gap. There-
fore, we also aim to develop a policy adaptation model to
bridge the domain gap between training environment and
testing environment.

2 Related Works
As we mentioned in Section 1, this project mainly focuses on
mesh networkmanagement. This problem has two categories
based on the objective: network traffic delivery, and econom-
ical and environmental operation. The first one includes
problem like routing management and data flow control,
while the second one is related to power management. RL, as
the best ML-model for real-world network management, has
been adopted in several works. Q-learning based AP selec-
tion in IEEE 802.11 mesh network is proposed by Niyato and
Hossain [1], which makes decisions by estimating collision
probability and received signal strength (RSS). D. Oriol et
al. adopts a Neural Network (NN) to predict link bandwidth
and then uses it as a routing metric [2]. The input metrics
are SNR, transmission time, MCS and re-transmission rate.

One common challenge of applying RL algorithm to physi-
cal communication networks is the sim2real gap. This occurs
when the network configuration policy learned from simula-
tions is deployed to physical networks. Using simulations has
advantages of reducing experimental overhead, as well as
improving flexibility and enriching configurable parameters.
But these come at the expense of questionable credibility
of the results. Shi et al. [5] employed a deep learning based
domain adaptation method to close this gap. This work also
leveraged a teacher-student neural network to transfer the
network configuration knowledge learned from a simulated
network to its corresponding physical network.

Among the existing mainstream ML models, RL excels at
real-time decision making by exploring better policy where
an optimal solution is not known as priori. The limitation of
most RL algorithms, is that they are limited as "offline learn-
ing”, which means that training model in simulation and
operation in real networks are relatively separated. This also
corresponds to sim2real gap. An online RL (OnRL) frame-
work was proposed to make video bitrate decisions in real-
time video telephony system [6]. This method involved mul-
tiple individual RL agents in the system and they evolved
their models over time. These agents were then aggregated

to form a high-level RL model, so that each agent can react
to unseen network conditions.

3 Method
In this section, we describe our self-supervised reinforce-
ment learning method for dynamic mmWave mesh network
configuration. With appropriate task design, it can be imple-
mented on top of different network management problems.

3.1 Reinforcement Learning
We design a reinforcement learning (RL) framework to dy-
namically configure mmWave mesh topology given the ob-
servations collected from the mmWave mesh network (Fig.
2). The RL agent keeps observing the mesh network states
𝑠𝑡 (e.g. signal strength, throughput, loss rate) and decides an
action 𝑎𝑡 (e.g. the routing path) which gives the optimal QoS.
Then this action 𝑎𝑡 is encoded as a command sent by the
controller, and the next multi-hop data transmission follows
the routing path given by 𝑎𝑡 . After the traffic goes through
the mesh network, it generates a new state 𝑠𝑡+1 and a reward
value 𝑟𝑡 , which are fed into the RL agent for a new round of
policy update.

Figure 2. The framework of PPO-based RL for mesh config-
uration.

The decision of 𝑎𝑡 is made by RL policy 𝜋\ : 𝑠𝑡 → 𝑎𝑡 .
Intuitively, if the RL agent chooses a linkwith low quality, the
quality of service (QoS) will be degraded, which is reflected in
the reward value 𝑟𝑡 that the end-to-end throughput is lower.
By observing a trajectory of 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 ..., the RL agent
knows how the chosen action will affect communication
quality of the mmWave mesh network, and updates its policy
to achieve better QoS.
State. The state is defined as 𝑠𝑡 =

(
®𝑙𝑡 , ®𝑡𝑡

)
, which denotes

the RSS of all links and the end-to-end throughput, respec-
tively.
Action. At each step, the RL policy 𝜋\ maps observed

state 𝑠𝑡 to 𝑎𝑡 in an action space A : {0, 1, 2}. Each number
represents a specific routing path.

ECE257A Project Report: AI-driven Dynamic Millimeter-Wave Mesh Backhaul UCSD ECE257A, 2022, La Jolla, CA

Reward. The RL policy is associated with a reward value
at each step, which in our project is defined as the normalized
throughput:

𝑟𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

𝑡
{𝑖 }
𝑡 (1)

To update the RL policy, we utilize the state-of-art PPO-
based RL algorithm. The objective of RL algorithm is to max-
imize a Q-value 𝑄𝜋\ (𝑠𝑡 , 𝑎𝑡) = 𝐸𝜋\ [R𝜏 |𝑠𝑡 , 𝑎𝑡], where R𝜏 =∑𝑇−1

𝑘=𝑡
𝛾𝑘−𝑡𝑟𝑘+1 (𝑠𝑘 , 𝑎𝑘) is the total cumulative reward. So the

final objective can be derived as

max 𝐽 (\) = max𝐸𝑠0∼𝑝0 [𝑄𝜋\ (𝑠0, 𝑎0)]

𝑠 .𝑡 . ∇\ 𝐽 (\) =
1
𝑁

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=0

𝑄𝜋\ (𝑠𝑖𝑡 , 𝑎𝑖𝑡)∇ log𝜋\ (𝑎𝑖𝑡 |𝑠𝑖𝑡)
(2)

PPO algorithm calibrates 𝐽 (\) as a clipped objective to
improve data efficiency and convergence:

𝐿(\) = Ê𝑡
[
min

(
𝛾𝐴𝑡 , clip (𝛾, 1 − Y, 1 + Y)𝐴𝑡

)]
(3)

𝛾 =
𝜋\ (𝑎𝑡 |𝑠𝑡)

𝜋\𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡) is the ratio of new policy to old policy. 𝐴𝑡

is an estimator of the advantage function at timestep 𝑡 . Ê
indicates the empirical average over a batch of samples. By
clipping the probabilty ratio within the range of [1 − 𝜖, 1 + 𝜖],
the policy is updated more smoothly.

3.2 Self-supervised Policy Adaptation
As discussed in Section 2, RL policies generally require many
training iterations and huge amount of data to converge. Due
to high cost of collecting data in the real mesh network, a
common solution is to train the policy in simulations and
deploy it the real network. However, our policy is trained
in offline simulations, so directly deploying the simulation-
trained policy to the real network may not achieve an ex-
pected performance because of domain gap. We present a
self-supervised learning (SSL) method that could adapt an
offline policy to a new environment and bridge the domain
gap.
Our self-supervised reinforcement learning framework

is shown in Fig. 3. Instead of directly feeding the observed
state 𝑠𝑡 in the PPO-based policy network, encoder 𝜋𝜙 first
extracts some features of 𝑠𝑡 and policy network 𝜋\ acts as a
controller based on extracted features. The mapping 𝑠𝑡 → 𝑎𝑡
may change in a new environment due to the domain gap.
Intuitively, we utilize the auxiliary self-supervision task to
refine the encoder so that 𝜋𝜙 (and consequently 𝜋\) can
generalize. Our great concern is to design an appropriate
self-supervision task to bridge the domain gap without intro-
ducing more complex model design or greater data collection
cost. In this project, we design the self-supervision task as
the inverse dynamic prediction.

Figure 3. Self-supervised reinforcement learning model for
policy learning and adaptation.

The inverse dynamic prediction utilize the existing data
generated during the interaction between RL agent and envi-
ronment. At each step, RL agent collects a state 𝑠𝑡 and makes
a decision 𝑎𝑡 . After conducting 𝑎𝑡 , RL agent could again ob-
serve a new state 𝑠𝑡+1 for next iteration. Therefore, RL agent
could always observe a transition sequence (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) at
each iterative round. Inverse dynamic prediction takes 𝑠𝑡 and
𝑠𝑡+1 as input and predicts the action 𝑎𝑡 to take. The objective
of inverse dynamic prediction in this project can be derived
formally as

𝐿(𝜙, 𝑓) = 𝑙 (𝑎𝑡 , 𝜋𝑓 (𝜋𝜙 (𝑠𝑡), 𝜋𝜙 (𝑠𝑡+1))) (4)

Since our actions are defined in discrete space, the output
𝑎𝑡 is actually a soft-max logits, which represent the proba-
bility distribution of taking each action. The loss function
𝑙 (•) is defined as cross-entropy loss. Hence, the training and
testing/deployment process can be decribed as follows.
Training. During training, we jointly train both RL pol-

icy network and self-supervised learning network so that
RL agent can make right decisions, and meanwhile self-
supervision agent can make right predictions. The corre-
sponding objective during training process can be written
as

min
𝜙,\,𝑓

𝐽 (𝜙, \) + 𝛼𝐿(𝜙, 𝑓) (5)

UCSD ECE257A, 2022, La Jolla, CA Wenyuan Zhao, Zheng Liu, and Ziyan Cui

Testing. During testing/deployment, the distribution of
𝑠𝑡 and 𝑠𝑡+1 could be changed, and the mapping 𝑠𝑡 → 𝑎𝑡 (con-
sequently (𝑠𝑡 , 𝑠𝑡+1) → 𝑎𝑡) could be changed. During deploy-
ment we only minimize self-supervised learning loss since
we only need small scale refinement and reward is inaccessi-
ble in some cases. The objective during testing/deployment
process can be written as

min
𝜙,𝑓

𝐿(𝜙, 𝑓) (6)

4 Experiments
In this section, we illustrate our experiments on validating
howwell the RL agent could dynamically configuremmWave
mesh network and how well the self-supervised learning
model could adapt policy to a new deployment environment.

4.1 Experimental Scenario
The experimental mmWavemesh network topology is shown
in Fig. 4. The traffic generated at the source node (Node 1)
needs several relays to reach the destination node (Node 5).
Three different paths are considered in this scenario:

• 2-hop: Node 1→Node 3→Node 5
• 3-hop: Node 1→Node 2→Node 4→Node 5
• 4-hop: Node 1→Node 2→Node 3→Node 4→Node 5

We investigate a scenario where a car stops by and causes
the failure of a blocked link for a while by setting a blockage
randomly at a link. Upon blockage happens, the RSS and
throughput of the blocked link will decrease significantly. So
the RL agent needs to dynamically adapt routing topology to
avoid the blocked link for optimal QoS based on the variation
of observed RSS and throughput.

Figure 4. mmWave mesh network topology.

4.2 Experiments in NS3 Simulator
We utilize NS3 simulator to generate abundant data and train
the self-supervised RL agent in simulations first. During each
episode, we simulate the 600 Mbps traffic from Node 1 to
Node 5 for 40 seconds. The RL agent collects a state 𝑠𝑡 and
decides an action 𝑎𝑡 every 2 seconds. The maximum length
of each episode is 20. We train the policy for 25000 time
steps (1250 episodes). The implementation of our neural
network architecture is illustrated in Fig. 5. All hidden layers

Table 1. Average test reward with/without self-supervised
(SSL) policy adaptation.

Strategy Test reward Average throughput

RL 11.23 336.9 Mbps
RL+SSL 19.56 586.8Mbps

of NNs are fully connected layers. The hidden dimension of
policy network is 64, while the hidden dimension of encoder
network is 32. The batch size is 128, which means the self-
supervised RL agent are updated every 128 steps.

Figure 5. Implementation of neural network architecture.

Fig. 6 shows the learning curve of RL policy. It starts from
a low average reward, and finally increases to the maximum
average reward, which means that the RL agent could learn
a good policy: make right decisions to avoid blockage link
and maintains high-rate data transmission.

Figure 6. Learning curve of RL.

After training a good policy in training environment, we
deploy the policy in a new environment where Node 1 is
further from Node 2 and Node 3. So the observed RSS of link
1 and link 2 is lower than what is observed in the training
environment, which is the domain gap between training and
deployment environment.

The result of pre-trained policy in testing environment is
shown in Table 1. We generate a 600 Mbps data flow from
Node 1 to Node 5. Directly deploying the original policy
to the new environment cannot get high throughput. But
with the help of SSL, policy can easily adapt to the new

ECE257A Project Report: AI-driven Dynamic Millimeter-Wave Mesh Backhaul UCSD ECE257A, 2022, La Jolla, CA

environment. The average throughput increases by more
than 70%. Fig. 7 shows the actual throughput variation with
and without self-supervised policy adaptation. Actually, the
throughput is extremely unstable without SSL policy adap-
tation, and could easily be degraded to 0. However, if we use
SSL policy adaptation, the throughput could stably keep at a
very high level (600 Mbps). Therefore, our self-supervised
policy adapation model could help bridge the domain gap
when we apply our offline trained policy to a new environ-
ment.

Figure 7. The episodic end-to-end throughput during test-
ing/deployment.

4.3 Experiments in Real Testbed

Figure 8. Node structure in real testbed.

Fig. 8 shows the structure of each node. In each node, we
have multiple Mikrotik mmwave routers. The number of
the routers depends on the number of the nodes that are
connected to each node. Each router uses mmwave wireless
link to communicate with another router which is equipped
on another node. This is how two nodes are connected. The
throughput of mmwave link can reach to more than 1.5 Gbps.
In each node we have a raspberry Pi. The raspberry Pi is used
for receiving controlling information from a laptop by WiFi
signal, and it is also used for sending controlling information
to routers by cable. The laptop here acts as a controlling

center, which can manage the whole topology, such as route
selection and pulling RSS and throughput information by
Remote Procedure Call (RPC). The laptop uses WiFi signal to
connect to the raspberry Pi in each node so that the whole
network can be controlled. In each node we also have a
portable battery for power supply.

Figure 9. Block diagram of testbed node structure.

Fig. 9 is our current design to forward data. Previously, we
have tried two different node structure design. We have tried
to use raspberry Pi (see Fig. 9) to build a bridge between a
pair of routers, however, the throughput is limited by the
raspberry Pi, the whole link can only reach to 300 Mbps. We
have also tried to just use an AP router for forwarding data
(see Fig. 9), but it turned out that the throughput is limited at
500 Mbps. We think that this is caused by the TDMA MAC
layer protocol. In our current design, the throughput of the
link is higher than 500 Mbps, but it is limited at 1 Gbps, this is
because the maximum throughput of the cable link between
router and switch is only 1 Gbps, so this is a simulation-to-
reality gap and our self-supervised learning model need to
deal with this gap.

Figure 10. Node structure in real testbed.

We deployed the whole network at the second floor of a re-
search hall (see Fig. 10). We have tried to deploy the network
indoors, but it turned out that the router kept switching at
different beam directions. We think that this is because there

UCSD ECE257A, 2022, La Jolla, CA Wenyuan Zhao, Zheng Liu, and Ziyan Cui

are so many selectable beams, and they have similar network
conditions.

To know more about the physical layer of mmwave com-
munications, we deployed two nodes outdoors and con-
nected them to each other. The distance between them was
near 100 meters. We issued an UDP traffic to test the link
performance. We found out that in outdoor environment,
the beam direction was fixed, instead of randomly changing
among multiple beams indoors. This is consistent with the
design of mmwave network. We also found out that when a
car or a person passed through the link, the RSS of the link
suddenly dropped down significantly and returned to the
normal value immediately after the blockage was removed.
This verifies the blockage issue of mmwave communication.

Our experiments still have some points that could be im-
proved in future. When there was no blockage, although it
did not happen frequently, our model may switch to another
route and then switch the route back immediately, we think
that this is because the real test bed is not stable enough so
that sometimes the throughput of a route can suddenly go
down to nearly zero. For the same reason, the controlling
center may suddenly stop working or get stuck at one code
line. The future work about this is, we will go through the
whole test bed step by step and figure out whether hidden
problem exists in each part, which can make the network
unstable.

When there was a blockage on one route, our model kept
selecting the previous route, without flexibly selecting other
better-throughput routes. A possible reason is, the through-
put of multi-hop routes are extremely low, so that throughput
changes were not significant enough when we blocked these
routes. Based on our debugging, this was caused by signal
collisions due tomultipath effect, so wewill deploy the whole
network outdoor to see if this problem can be fixed. Another
possible reason is, we neglected some simulation-to-reality
gaps, such as MAC-layer differences, and these gaps cannot
be eliminated by self-supervised learning model. To solve
this issue, we will try building more sophisticated simulation
models, which involve MAC-layer settings and queuing of
each node.

5 Conclusion
In this project, we firstly did comprehensive paper read-
ing and material learning about how to establish RL model,
self-supervised learning model, and how to combine them
together so that we can learn from simulations and use
the knowledge on real scenarios by eliminating sim2real
gap. The test results in simulations indicate that the RL
agent can learn a policy to avoid blockage links and self-
supervised learning model can help to eliminate domain
gaps. Secondly, we built a testbed with Mikrotik mmwave
devices and Respberry Pis. Our testbed can establish mul-
tiple routes and the topology can be controlled effectively.

Thirdly, we successfully ran the simulation-trained RL policy
and self-supervision on real testbed.

6 Self-contribution
• Wenyuan Zhao. Design the project objective as solv-
ing mmWave mesh network topology management.
Propose the RL model to dynamically configure rout-
ing path. Propose the SSL model to bridge the domain
gap. Write the code of RL and SSL algorithms. Train
RL policy in network simulations and refine the model
based on simulation results. Validate the performance
of SSL policy adaptation. Help build the physical mesh
network and the interface between real testbed and
RL agent.

• Zheng Liu. Define project objective. Build a physical
mmWave mesh network to do experiments. Modify
and refine testbed structure based on testing results.
Conduct experiments in different scenarios: indoor
and outdoor. Investigate challenges of mmWave mesh
communication: beamforming, blockage pattern.Work
on improve testbed capability.

• Ziyan Cui. Background research on mesh network,
and help define project objective. Investigate simula-
tion tools (NS3) and machine learning tools (pytorch).
Learn how to adapt WiGig module to perform end-
to-end simulation and build the simulation platform.
Model refinement and hyperparamter tuning. Train RL
policy in network simulations and evaluate simulation
results.

References
[1] Dusit Niyato and Ekram Hossain. 2009. Cognitive radio for next-

generation wireless networks: An approach to opportunistic channel
selection in IEEE 802.11-based wireless mesh. IEEE Wireless Communi-
cations 16, 1 (2009), 46–54.

[2] David Oriol, Thi Mai Trang Nguyen, and Guy Pujolle. 2012. Available
bandwidth estimation in Wireless Mesh Networks using neural net-
works. In 2012 Third International Conference on The Network of the
Future (NOF). IEEE, 1–5.

[3] Ashwini Patil and HK Sawant. 2012. Technical specification group
services and system aspects IP multimedia subsystem (IMS). Int. J.
Electron. Commun. Comput. Eng. 3, 2 (2012), 234–238.

[4] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek,
Gerhard Fettweis, Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth,
Jens Voigt, Ines Riedel, et al. 2017. Latency critical IoT applications in 5G:
Perspective on the design of radio interface and network architecture.
IEEE Communications Magazine 55, 2 (2017), 70–78.

[5] Junyang Shi, Mo Sha, and Xi Peng. 2021. Adapting wireless mesh
network configuration from simulation to reality via deep learning
based domain adaptation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 887–901.

[6] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma, Yuhan Hu,
Cong Li, Xinyu Zhang, Huadong Ma, and Xiaojiang Chen. 2020. OnRL:
improving mobile video telephony via online reinforcement learning.
In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. 1–14.

	Abstract
	1 Introduction
	2 Related Works
	3 Method
	3.1 Reinforcement Learning
	3.2 Self-supervised Policy Adaptation

	4 Experiments
	4.1 Experimental Scenario
	4.2 Experiments in NS3 Simulator
	4.3 Experiments in Real Testbed

	5 Conclusion
	6 Self-contribution
	References

