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Abstract

Processing and analysis of brain signals generally requires a large amount of data.
But the acquisition of EEG signals is difficult while the sample size of the data
set is small, and sometimes categories are unbalanced in the data set. Based on
the challenge, we proposed the WGAN-GP method, a variant of GAN, to generate
and extend the data set of EEG signals. Our experiments on both single-channel
and multi-channel model show that the generated EEG signals have closer shape
and better spectrum performance than those generated by traditional methods. Our
results and analysis show that the proposed WGAN-GP can generate accurate
and diverse EEG signals, and thus, help extend the data set which is difficult to
collect physically. We’ve made the code associated with this work available at
https://github.com/warrenzha/GAN-EEG-generation.

1 Introduction

An important research direction in brain science is the analysis and processing of brain signals.
Brain-computer interface systems (BCIs) can connect the brain with external world by extracting
features of electroencephalograhic (EEG) brain signals. Scientists can obtain desired information
via signal acquisition, pre-processing and feature extraction. However, it is difficult to collect EEG
signals from subjects by repeating the task for a long time, and it is even more difficult for the elderly
and children, who are the more significant subjects of brain research. In addition, most of the current
BCIs algorithms are working offline on collected data sets. For real-time BCIs systems, the limited
data set will affect the speed of real-time training and decision making procedure. Therefore, it is
necessary to expand the data set by generating new EEG signals based on generative models.

With the development of deep learning models, more and more deep learning models and algorithms
are applied to the classification and feature extraction of Electroencephalography (EEG) signals.
However, the downside exist as the acquisition of EEG signals is difficult while the sample size of the
data set is small, and sometimes categories are unbalanced. In this way, generating EEG signals from
generative models is an relatively effective alternative, as it augments the data by producing artificial
samples not included in the original data set and thereby increase training data to improve the model.
Our purpose is to design a generative model to generate useful EEG signals for BCIs research.

Contribution of this project includes:

• Developed the network structure for EEG signal generation, according to single-channel
(1D-convolution, 1D-deconvolution, 1D-pooling layer) and multi-channel information (2D-
convolution, 2D-deconvolution and 2D-pooling layer). Implemented the generation experi-
ment on P300 EEG signals.
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• Visualized the generated data from two perspectives, frequency and time domains, and
evaluate model stability in training. The experimental results show that our generative
model, WGAN-GP, is stable, and the generated signal is accurate and diverse.

• Compared our model with traditional generative model, VAE. The spectrum performance
shows that our model performs better than VAE. The signals generated by WGAN-GP
improve classification models more than signals generated by VAE.

2 Related Works

Model-based methods for signals generation. Before the advent of GAN, the ways to generate
new signals are generally model-based. Li Y et al. and Wang F et al. generated new brain signals by
adding Gaussian noise to the signals [7]. Majidov I et al. generated new brain signals using sliding
window [10]. Shovon T H. et al. generated new brain signals by performing short-time Fourier
transform(STFT) on signals, then performing a geometric transformation on the generated pictures
[13]. Lotte F. generated new brain signals in 2011 by a split recombination method that considered
only time domain features [8]. In 2015, they further improved their previously proposed method by
proposing a split and recombination method that takes into account both time domain characteristics
and frequency domain characteristics [9].

Data-driven methods for signals generation. Proposed by Goodfellow I J in 2014, generative
Adversarial Networks (GAN) is first widely used in image generation [5]. In the early days of
GAN, however, it was not used in the field of time series signaling, especially in brain signal
generation. It suffered from training instability and were restricted to low resolution images. A lot
of advancement in regard to stability and the quality of the generated images has been made with
different regularization methods [2]. GANs also manipulate properties in generated samples [12] and
therefore can help understand the original data distribution in GAN training session. Until recent
years, researchers started to generate EEG signals based on GAN methods. The variants of GAN have
been improved from the original GAN for generation of EEG signals, especially Motor Imagery (MI)
signals. Esteban C et al. used Recurrent GAN (RGAN) and Recurrent Conditional GAN (RCGAN)
to generate medical time series signals [4]. Abdelfattah S M et al. used RGAN to generate motion
imaging signals in 2018 [1]. Hartmann K G et al., in 2018, used improved Wasserstein GAN (WGAN)
to generate single-channel EEG signals, and demonstrated through a series of indicators that they
can generate natural and artificial signals that approximate the original signal [6]. Panwar S et al.
generated RSVP single-channel signals in 2019, using gradient penalty-based conditional WGAN
[11]. Aznan N K N et al. used Deep Convolutional GAN (DCGAN), WGAN, and VAE to generate
single-object and multi-object Steady-State Visual Evoked Potential (SSVEP) signals, respectively
[3].

P300 brain signal. The brain signal stuied in this project is the P300 signal, which is a type of
Event-related Potentials (ERP) that can be visually induced. ERP has many components, which can
be divided into two parts - endogenous components (such as N200, P300, N400) and exogenous
components (such as P80, N100, P200). P300 is the most stable one and has received a lot of
attention in research. Although there have been some studies on EEG signal generation based on
GAN variants, most of them focus on motor imagery signals and other kinds. Few works studied
visual evoked-related signals. Through literature review, no research generated P300 signals based on
GAN methods.

3 Problem Definition

The purpose of this project is to generate useful EEG signals (P300) to help expand the data set for
BCIs research. As shown in Figure 1, P300 refers to a positive spike generated in the area near the
top of the head about 300ms after stimulation.

The structure of the brain is unique, and through the same experiments, the shape of P300 waveform
from different subjects will be quite different. Figure 2 shows the comparison of the average P300
signals between two different subjects. It shows significant differences in the peak value and the
position of the wave peak.

P300 signals studied in this project were Wadsworth BCI Dataset (P300 Evoked Potentials) recorded
a complete set of P300 evoked potentials with BCI2000 by Donchin et al., 2000. The recorded data
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Figure 1: P300 waveform (blue curve) Figure 2: P300 signal from 2 subjects

Table 1: Obtained data size and data pattern.

Positive sample size Negative sample size Ratio Matrix size of each sample

Subject A 170 850 1:5 [8,240]
Subject B 170 850 1:5 [8,240]

has been converted into 4 Matlab *.mat files, one training (85 characters) and one test (100 characters)
for each of the two subjects A and B. The data set was obtained by using the P300 character spelling
system using the row-column stimulation paradigm and using the 64-channel EEG acquisition method
in the international 10-20 electrode specification. Figure 3 shows the electrode names and channel
assignment numbers for the 64 channels. For each *.mat file, the recorded 64-channel EEG signal is
organized in one big matrix.

Figure 3: This diagram illustrates electrode
designations (Sharbrough, 1991) and channel
assignment numbers as used in our experi-
ments.

Figure 4: This figure shows a topography
of values of P300 from different channels.
Warmer color means more active brain signal.

During signal acquisition, the EEG signal has been filtered by a band-pass filter from 0.1-60Hz and
digitized under 240Hz. Figure 4 indirectly indicates spatial differences in P300 stimulation, with
stronger P300 signal excitation near the top of the brain. Therefore, in this project, 8 channels with
high variance in Figure 4 are selected for the generation of EEG signals. Then the obtained data size
and number of samples to deal with are shown in Table 1.

Due to the difference in the number of targets and non-targets, there are obvious differences in the
number of positive and negative samples. In this project, we work on generating target P300 signals
expand positive samples and eliminate the imbalance of sample categories.
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4 Methodology

4.1 Generative adversarial network (GAN)

Native GAN was proposed by Goodfellow I J in 2014 [5], which is an unsupervised architecture
consisting of a generator network (G) and a discriminator network (D) shown in Figure 5. The inputs
of G and D are are real data x and random variable z, respectively. Then G(z) is the generated data
generated by G that obeys the real data distribution pdata as much as possible. The discriminator D
is to complete the binary classification task of the input data, and correctly divide the data into two
categories: true (real data x) and false (generated data G(z)). Our goal is to make the performance
D(G(z)) and D(x) as equal as possible. During this process of adversarial and iterative optimization,
D and G are continuously improved. When D cannot correctly identify the data source, it can be
considered that generator G has learnt the distribution of the real data, i.e. pdata(x) = pg(x).

Figure 5: The frame of GAN.

The training process of GAN is shown in Algorithm 1. First, fix G and optimize D. Since the last
layer of D is a Sigmoid function layer, the output of D is limited to [0, 1], which also represents the
probability of the authenticity of the data. The process of training the discriminator is equivalent to
minimizing the cross-entropy loss function:

LossD(θD, θG) = −
1

2

(
Ex∼pdata(x) [logD(x)] + Ez∼pdata(z) [log (1−D (G (z)))]

)
. (1)

Then, fix D and optimize G. When the input is G(z), the discriminator is to discriminate it as false.
And the generator try to fool the discriminator not to judge it as false, but to judge it as true. When the
accuracy of D is minimized, the generator G reaches the global optimal solution pdata(x) = pg(x).
Then the objective of GAN optimization can be given by

min
G

max
D

L(D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pdata(z) [log (1−D (G (z)))] (2)

Algorithm 1: GAN mini-batch stochastic gradient descent
for training episode do

for Discriminator episode do
Sample a minibatch of m noisy data with distribution pg(z): {z1, z2, . . . , zm}
Sample a minibatch of m real data with distribution pdata(x): {x(1), x(2), . . . , x(m)}
Update discriminator with gradient ascent:

∇θd
1

m

m∑
i=1

[
logD(x(i)) + log

(
1−D

(
G
(
z(i)

)))]
end
Sample a minibatch of m noisy data with distribution pg(z): {z1, z2, . . . , zm}
Update generator with gradient descent:

∇θg
1

m

m∑
i=1

[
log

(
1−D

(
G
(
z(i)

)))]
end
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4.2 Wasserstein GAN (WGAN)

One big drawback of GANs is the notorious instability of the discriminator during training. The
discriminator might collapse into only recognizing few and narrow modes of the input distribution
as real, which drives the generator to produce only a limited amount of different outputs. The
original GAN framework tries to minimize the Jensen-Shannon (JS) divergence between the real data
distribution Pdata and generated data distribution Pg . If the discriminator is too strong, it will easily
separate the generated data from the real data, resulting in the inability to provide a sufficiently large
gradient for the generator to update, resulting in the problem of vanishing gradients for the generator.

Wasserstein GANs (WGAN) and their improved version proposed by Arjovsky et al. (2017) [2] show
promising advances for training stability. They proposed to to minimize the Wasserstein distance
between the distributions instead of the JS-divergence. This leads the discriminator to optimize the
Wasserstein difference

W (Pr, Pg) =
1

K
sup

∥D∥L⩽K

Exr∼Pdata
[D(xr)]− Exg∼Pg

[D(xg)] , (3)

where the constraint is the Lipschitz continuity condition. That is, there exists a constant K ⩾ 0,
such that

|f(x1)− f(x2)| ⩽ K |x1 − x2| , ∀x1, x2 ∈ domf.

4.3 GAN improvement: WGAN-GP

During training procedure, to maximize the loss for the discriminator, one explicit way is to increase
the difference between score of the real sample and the generated sample. For the discriminator, the
optimal strategy is to make each parameter either take the upper bound or the lower bound, causing
the parameter concentration problem.

Hence, we add a gradient penalty term to the loss function of the discriminator to solve this problem.
The Lipschitz condition requires that the gradient of the discriminator does not exceed K, which is
the role of the gradient penalty term. Then the loss function of the discriminator is given by

LossD = Exr∼Pdata
[D(xr)]− Exg∼Pg

[D(xg)]− λEx∼Ppenalty
[max (0, ∥∇xD(x)∥ − 1)] . (4)

If the gradient penalty coefficient is chosen higher, the gradient of the discriminator can be limited
around 1, which satisfies the 1-Lipschitz condition well, and stabilizes the gradient. The improved
GAN is shown in Algorithm 2.

Algorithm 2: WGAN-GP
Input: λ: gradient penalty coefficient
Initialization: ω0: initial discriminator parameters; θ0: initial generator parameters;
while ω does not converge do

for t = 1, . . . , n do
for i = 1, . . . ,m do

Sample a minibatch of m real data
{
x(i)

}m

i=1
∼ Pdata;

Sample a minibatch of m noisy data
{
z(i)

}m

i=1
∼ Pz;

x̃← Gθ(z);
x̂← ϵx+ (1− ϵ)x̃;
L(i) ← D(x̃)−D(x) + λ (∥∇x̂D (x̂) ∥2 − 1)

2;
end
w ← Adam

(
∇ω

1
m

∑m
i=1 L

(i), ω, α, β1, β2

)
;

end
Sample a minibatch of m random data from a given distribution:

{
z(i)

}m

i=1
∼ Pz;

θ ← Adam
(
∇θ

1
m

∑m
i=1 L

(i) −D(Gθ(z)), θ, α, β1, β2

)
;

end
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Table 2: Network Topology of Generator

Generator input: [1,100] under distribution N(0,1)

Network Layers Input Size Output Size # Parameters Hyperpara.

Affine Layer [1,100] [1,400] 40400 -
Leaky-ReLU [1,400] [1,400] 1 α
Reshape [1,400] [16,25] 0 -
ConvTranspose1d [16,25] [16,56] 2064 k, s
Leaky-ReLU [16,25] [16,56] 1 α
ConvTranspose1d [16,25] [16,118] 2064 k, s
Leaky-ReLU [16,118] [16,118] 1 α
ConvTranspose1d [16,25] [8,240] 776 k, s

Total # parameters: 45307

Table 3: Network Topology of Discriminator

Discriminator input: [8,240]

Network Layers Input Size Output Size # Parameters Hyperpara.

Conv1d [8,240] [16,118] 784 k, s
Leaky-ReLU [16,118] [16,118] 1 α
Conv1d [16,118] [16,56] 2064 k, s
Leaky-ReLU [16,56] [16,56] 1 α
Max-pool [16,56] [16,28] 0 k
Reshape [16,28] [1,448] 0 -
Affine Layer [1,448] [1,100] 44900 -
Leaky-ReLU [1,100] [1,100] 1 α
Affine Layer [1,100] [1,1] 101 -

Total # parameters: 47852

5 Experiment and Results

5.1 Data pre-processing

Although a 0.1–60Hz band-pass filter has been carried out when the signal is collected, there still
exists high frequency noise. While main frequency of P300 is within 20Hz, the noise still has a
negative effect on the following analysis. Therefore, applying low-pass or band-pass filter to eliminate
the high frequency noise is necessary.

In this project, we feed the original signal into a Butterworth low-pass filter to filter the high frequency
noise. The sampling rate fs = 240Hz, pass-bands fpass = 15Hz, stop-bands fstop = 20Hz. The
main frequency part of P300 (within 20Hz) are maintained.

5.2 Network topology and experimental parameters

In this work, we generated P300 EEG signals with WGAN-GP method from both single-channel
and multi-channel. From Section 3, the P300 signal was sampled for 1 second under 240Hz digital
frequency from 64 channels. Hence, each sample is a matrix with the size [240, 64], of which each
column vector represents the sampled P300 signal of a specific channel.

For single-channel implementation, the input of the discriminator is a vector signal from a specific
channel. For multi-channel implementation, we selected 8 channels with highest variance for the
generation. Hence, the input becomes a matrix with the size [8, 240]. Both the generator G and
discriminator D are trained by convolution neural network (CNN). The details of the network topology
are shown in Table 2 and 3.

The generator and discriminator are trained by Adam optimizer. The learning rate of the discriminator
lr1 = 0.00005, and the learning rate of the generator is lr2 = 0.0001. Setting the learning rate of
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the discriminator to be slightly smaller than the learning rate of the generator is mainly to make the
discriminator not too powerful, which will affect the stability of training and the learning speed of the
generator. The two parameters of Adam optimizer β1 = 0.5, β2 = 0.99.

The total epochs of training is set to 2000. In each training epoch, train the discriminator for 5 times
and then train the generator once. The size of mini-batch is set to 10. By packing the input model in
small batches instead of individual data-input models, we can speed up the training.

5.3 Generated data visualization

The most intuitive way to observe the signal is the signal waveform in time domain. We directly plot
the waveform of generated P300 signals in Figure 6. Our experiment generated a total of 800 signal
samples, from which 170 samples (the size of the real data set) were taken for visualization. The left
column of Figure 6 is the generated signal in each channel, while the right column of Figure 6 is the
real signal in each channel. The ordinate is the normalized amplitude of the signal, and the abscissa
is time.

From an overall amplitude perspective, the amplitude of the generated signal is not much different
from the real signal. In the real data, there are individual signals that are outliers, and their amplitudes
are quite different from most of the signals, but in the generated data, no outlier signals that are far
from most of the signals are found, which shows that the training of the network is still good. Better,
avoid the influence of outlier samples and learn the main characteristics of the distribution.

Figure 6: WGAN-GP generated P300 signal in
8 channels.

Figure 7: Comparison: WGAN-GP generated
signal and real signal.

Figure 7 shows the comparison between generated signals and real signals in each channel. Although
the generated signal is not as smooth as real signal, this does not affect the qualify of our generated
signals since the raw data are filtered by a low-pass filter. Hence, the raw signals should look more
smooth than our generated signals. The peak at around 0.5s illustrates that the network learns the
property of P300. Comparing signals generated by different channels, each signal is unique and has
some differences from real signals, which means single-channel signal does not copy the real signal
or each other. Moreover, the means of generated signals and real signals are the same. Therefore, our
generated signals can help expand the data set based on the results in time domain.
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5.4 Spectrum performance compared with VAE

Frequency and spectrum are important indicator characteristics of a signal. For generating a signal,
the observation of the spectrum is essential in order to evaluate the quality of its generation. For
the P300 EEG signal, since its main component is within 20Hz, the spectrum of the generated
signal mainly observes two points: the change of the spectrum within 20Hz compared with the real
signal spectrum, and whether there is high frequency in the high frequency band outside 20Hz noise
introduction.

Figure 8: Spectrum performance from WGAN-GP, VAE, and raw data set.

We compared the spectrum performance between P300 signals from our WGAN-GP model, traditional
VAE model, and raw data set. Figure 8 is the frequency domain comparison of generative models with
Subject A as an input. In high frequency domain, VAE behaves better than WGAN-GP, because it
does not have high frequency noise. However, in the low frequency domain, especially main domain,
WGAN-GP apparently has better performance, and simulates the feature of real signals well. Our
focus of observation should be the difference between real signal and generated signal within 20Hz
since the main frequency of P300 is within 20Hz. The high frequency noise can be eliminated easily
by a low-pass filter.

5.5 WGAN-GP model evaluation

As mentioned Section 4, WGAN-GP relies on minimizing the loss functions of the generator and
discriminator. By observing the convergence of the loss function, that is, observing the training
situation, the WGAN-GP modelcan be evaluated, or the generated signal can be indirectly evaluated
by observing whether there is overfitting.

Figure 9 shows how the loss function converged in our experiment. The Wasserstein distance of two
distribution can be approximated by the inverse number of loss function in WGAN. The loss function
of discrinimator (Dloss), which is positive at the beginning, drops significantly, fluctuates until it
converges to a negative number close to zero. This illustrates that the discriminator cannot discriminate
the feature of generated signal from real signal, that is, generator has learnt the characteristics of real
P300 signal.

The loss function of generator (Gloss) is arguably meaningless. But according to the essence of the
adversarial network, the loss function of the generator should be in a fluctuating state, which reveals
"adversary". Hence, the training process of WGAN-GP generative model is convergent.

We then selected four evaluation parameters that are widely used in GAN evaluation to compare the
performance of our WGAN-GP model with traditional generative model VAE in Table 4:

• Inception score (IS). Feed the generated samples into the network, and predict the labels.
Calculate the entropy of the conditional label distribution of the generated samples to
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Figure 9: Convergence rate of WGAN-GP.

Table 4: Evaluation of WGAN-GP and VAE.

IS FID SWD MMD

WGAN-GP 1.3220 22.6670 0.022 0.0726
VAE 1.4421 32.2682 0.0232 0.0524

measure the quality of the samples. When the value of IS is higher, it indicates that the
quality and diversity of the generated samples are better.

• Frechet Inception score (FID) FID evaluate the model by measuring the distance between
the generated sample distribution and the true sample distribution. With lower FID, the two
sample distributions are closer, indicating better quality and diversity.

• Sliced Wasserstein distance (SWD). SWD maps to the Wassertein distance between two
distributions. If the SWD is lower, the two distributions are more similar in appearance and
diversity.

• Minimum average Manhattan Distance (MMD). MD calculates the distance between real
samples and generated samples to evaluate similarity.

When evaluated by IS, VAE performs better since it generates less high frequency noise. However,
when evaluated by FID, WGAN-GP shows more diversity, thus, WGAN-GP is better than VAE. In
terms of SWD, two models are nearly the same rating. Generally, WGAN-GP can generate accurate
and more diverse P300 signals.
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6 Future Works

There are still many open possibilities for further investigations. First, the data set is a sample of
average elimination effects and is small in size. We have to determine whether the model can be
further used in a large sample. Second, in practice, most BCIs researches use full-channel EEG
signals. The WGAN-GP generative model in multi-channel, however, played with only 8 selected
channels. We would like to extend WGAN-GP to full channel. Third, due to the imbalance of
categories, the need for sample supplementation is relatively usual. It is necessary to further improve
the model performance through adjustment for practical real-time classification applications.

7 Conclusion

This project focuses on GAN-based EEG signal generation algorithms. We generated useful P300
EEG signals based on an improved WGAN-GP model. Experimental results show that WGAN-GP
generative model is stable and accurate under single and multi-channel. Model evaluations show
that WGAN-GP has better spectrum performance than traditional method VAE. WGAN-GP also
performs better than VAE in terms of signal diversity, and WGAN-GP improves the classification
models more than VAE.
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